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Figure 1: Our software tool Roadkill converts 3D models to 2D cutting plans for laser cutting—such that the resulting layout allows 
for fast assembly. Roadkill achieves this with the help of a visual language that conveys assembly instructions directly in the 

generated layout and by collocating plates to be joined, thereby minimizing visual search. 

We present Roadkill, a software tool that converts 3D models to 2D cutting plans for laser cutting—such that the resulting layouts allow 
for fast assembly. Roadkill achieves this by putting all relevant information into the cutting plan: (1) Thumbnails indicate which area of 
the model a set of parts belongs to. (2) Parts with exposed finger joints are easy to access, thereby suggesting to start assembly here. 
(3) Openings in the sheet act as jigs, affording assembly within the sheet. (4) Users continue assembly by inserting what has already 
been assembled into parts that are immediately adjacent or are pointed to by arrows. Roadkill maximizes the number of joints rendered 
in immediate adjacency by breaking down models into “subassemblies.” Within a subassembly, Roadkill holds the parts together using 
break-away tabs. (5) Users complete subassemblies according to their labels 1, 2, 3…, following 1 -> 1 links to insert subassemblies into 
other subassemblies, until all parts come together. In our user study, Roadkill allowed participants to assemble layouts 2.4 times faster 
than layouts generated by a traditional pair-wise labeling of plates. 
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1 INTRODUCTION 

While 3D printing continues to be one of the key technologies in rapid prototyping, laser cutting is catching up. With 
the ability to produce even large parts within seconds, laser cutters often allow producing models orders of magnitude 
faster than 3D printers [4]. A recent milestone in this evolution towards fast fabrication with laser cutting is a series of 
software systems that allow users to design laser cut 3D models directly in 3D and then automatically convert these 3D 
models to the 2D cutting plans demanded by the laser cutter (FlatFitFab [25], Platener [6],  Kyub [5]). 

As a result, the first two phases of the laser cutting workflow design and cutting, have become very fast and, as a 
result, it is now often the third phase, assembly, that becomes the bottleneck. For example the laser cut chair model 
shown in Figure 1 took 3 minutes to design in Kyub [5] and 3 minutes to laser-cut on a Trotec Speedy 360 laser cutter 
[44], but it took our study participants an average of 22 minutes to assemble, resulting in the assembly time accounting 
for 80% of the overall fabrication time. Since our objective is to accelerate laser cutting further, assembly is the phase to 
tackle.  

Closer examination reveals why assembly is slow. As shown in Figure 2, the cutting plans produced by FlatFitFab 
[25] and Kyub [5] use pairs of IDs (here numbers) to communicate which parts the users are supposed to join during 
assembly. When assembling a joint, users pick a joint, read its ID, and then visually search the cutting plan for a matching 
ID. This visual search consumes time proportional to the number of IDs on the cutting plan and given that users do it at 
least once per plate, the resulting overall user effort caused by visual search is quadratic in the number of plates. With 
all the other steps in the workflow being of linear time complexity, this quadratic effort not only forms the bottleneck 
of the assembly, but the bottleneck of the entire laser cutting workflow. 

 

Figure 2: (a) Cutting plans produced by FlatFitFab [25] use pairs of numbers to communicate which parts to join during assembly. 
(b) Kyub [5] follows the same approach. Locating a matching number takes users time proportional to the number of plates. 

In this paper, we present Roadkill, a software tool that produces 2D cutting plans that are not subject to this bottleneck. 
As illustrated by Figure 1, Roadkill features a visual language encompassing 10 design elements, the key element of 
which is that cutting plans produced by Roadkill guide the users from joints to their matching counterpart: in most cases 
users find the counterpart in immediate adjacency; in some cases, users follow arrows which Roadkill adds to the cutting 
plan. In our user study, participants assembled the cutting plans generated by Roadkill 2.4 times faster than traditional 
cutting plans which are based on a pair-wise labeling of plates. 

The obvious benefit of Roadkill is that it offers a substantial quantitative benefit: a speed-up of 2.4x. This quantitative 
benefit translates into a qualitative benefit, in that it enables a novel application scenario: Similar to how 3D printing 
enabled “overnight prototyping”, and how software-supported laser cutting enabled “between meeting prototyping”, we 
see Roadkill enabling “within-meeting prototyping.” We see Roadkill allowing prototyping to take place within a 
brainstorming session, i.e., it allows participants exchanging ideas to support these ideas with prototypes designed and 
fabricated during the meeting. 
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2 ROADKILL WALKTHROUGH 

Expanding on the example of Figure 1, the following walkthrough shows how a user assembles a chair model. 
As illustrated by Figure 3a, Roadkill fabricates the chair model in four separate parts, which we will refer to as 

“subassemblies.” Subassemblies are a necessary side effect that allows Roadkill to create easy-to-assemble layouts, as we 
explain in detail below. The four subassemblies are labeled “1”, “2”, “3”, and “base”. Users start with subassembly “1”. 
The number of subassemblies is small (here 4), and therefore, requires a minimal amount of visual search. (d) 
Subassemblies are surrounded by a frame that is cut through but (c) moving them around is easy, as plates within a 
subassembly are held in place by tiny “break-away tabs”. 

 

Figure 3: Roadkill has exported the chair in the form of (a) four “subassemblies” surrounded by frames that are (b) cut through while 
plates within are connected to the frame by (c) breakaway tabs. 

Figure 4 shows a user assembling subassembly “1”. (a) A thumbnail shows that this subassembly builds the bottom 
of the chair and its legs. Like all visual elements created by Roadkill, the thumbnail is cut, so it can be seen from either 
side. Allowing models to have engraved decorative elements without the need to flip the plate in the laser cutter. (b) The 
subassembly is enclosed in a thin rounded frame, but the finger joints of one or more plates (here 4) are sticking out; 
these are easy to grab, which is how Roadkill indicates where to start. (c) The user grabs one of the exposed “starting 
plates” and bends it upwards—breaking the tab that was holding it in place. Breakaway tabs are placed along the inner 
edge allowing the plate to act as a lever and affording this specific movement. 

This plate has a single immediate neighbor, which is Roadkill’s default way of communicating which plate to join. 
Rectangular cavities in this neighboring plate form a “jig”, affording the small plate to be inserted. (d) The user inserts 
the small starting plate. Note how the entire subassembly acts as jig, holding the emerging 3D model in place. Roadkill 
enables this by ensuring that plates are always inserted from above.  

As before, this plate has only a single immediate neighbor. The user thus extracts the two-plate-structure from the 
subassembly, and (e) inserts them into the jig of the adjacent neighbor. 

break-away tab

subassembly 
label ba c
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Figure 4: (a) A “preview thumbnail” indicates the subassemblies location in the model. Roadkill affords a simple “outside-in” 
assembly order. (b) Starting plates are indicated by “exposing” them outside the frame which allows the user to (c) easily break them 

out and (d) connect with the adjacent plates using “jigs”. 

As illustrated by Figure 5a, this plate has no immediate neighbor (the reason is that the local geometry of the chair 
forms a cavity here, preventing plates from being in immediate adjacency (see algorithm). Instead, this time an arrow 
points to the jig to insert into. (b) This arrow has a twist which suggests rotating the plate before insertion, while the 
asymmetric jig prevent erroneous insertion. (c) The user performs this rotation and inserts the plates. The user has now 
completed (the inner part of) a first chair leg. 

 

Figure 5: (a) In case the next plate in the assembly order cannot be placed adjacently, Roadkill uses an arrow to indicate it. (b) A 
twist in the arrow hints that the plate has to be (c) rotated before insertion, while asymmetric jigs help with alignment. 

At this point the user has reached the “central plate” of this subassembly. As shown by Figure 6, the central plate 
cannot be connected elsewhere in the subassembly as it features neither adjacent jigs nor outward pointing arrows. The 
user thus continues assembling  with the remaining three starting plates, assembling all four legs. Within the 
subassembly, Roadkill ensures that all sequences initiated by the starting plates can be assembled in any order—or in 
parallel, in case multiple users would like to collaborate. 

(b) Upon completion of subassembly “1”, the user extracts the emerging model and inserts it into the subassembly 
that contains the target label “1” + “arrow hat”, here the “base”. The placement of the “1” on the first subassembly and 
the placement of “1” + “arrow hat” on the second subassembly disambiguates the necessary rotation. As before, the 
asymmetric jig prevents erroneous insertion. 
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Figure 6: (a) All assembly sequences are terminated at a central plate and are assembled independently of each other. (b) After 
completing subassembly “1”, the user takes it out and inserts it into the “base” subassembly as indicated by the matching numeric 

label. 

As shown in Figure 7,(a) the user now assembles subassembly “2”, (b) inserts it into subassembly “3”. Note how the 
arrow flips the “backrest” before (c) inserting it into the “seat”. To ensure the aforementioned assembly from above the 
“seat” is mirrored (see algorithm). (d) The user then inserts subassembly “3” into the only remaining subassembly (called 
“base”), which (e) completes the chair model. 

 

Figure 7: (a) The user assembles “2” and (b) inserts it into “3”. Here the “seat” plate is mirrored to allow the “backrest” to be (c) 
inserted from above (d) The subassembly “base” receives “3” and is assembled last to (e) complete the chair model. 

The key to the Roadkill assembly process is the use of adjacency and/or arrows as a means of eliminating visual 
search, thereby achieving fast assembly. For trivial models, such as fully convex, models Roadkill can place plates in 
adjacency by simply “unrolling” (aka “flattening” [36]) the model. For more complex models, including the chair model 
shown above, the naïve attempt to flatten the model results in multiple plates being placed at the same position, resulting 
in an erroneous layout. Roadkill resolves this by breaking down the model into multiple parts—the aforementioned 
subassemblies. The algorithm that breaks down models into just the right subassemblies is the core algorithmic 
contribution of this paper. 

3 CONTRIBUTIONS & LIMITATIONS 

In this paper, we make four contributions.  
First, we identify manual assembly as the current bottleneck of rapid prototyping on laser-cutters based on its 

quadratic complexity. Second, we propose a novel cutting plan layout as well as a visual language communicating this 
layout. The main benefit of Roadkill is fast assembly. In our user study, participants assembled a test object 2.4x faster 
when that model was laid out by Roadkill than when laid out using the traditional approach which uses pairs of numbers. 
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Third, we present an algorithm and software tool that converts 3D models into this layout and visual language. Fourth, 
we integrate our tool into an existing 3D editor (Kyub [5]). 

Roadkill’s visual language encompasses the following 10 design elements: Roadkill communicates matching joints by 
(1) means of adjacency and (2) by means of arrows. Both are enabled by (3) subassemblies, held together by (4) break-
away tabs. (5) Thumbnails preview the contents of each subassembly. Users start assembly with plates marked by 

(6) exposed finger joints and continue (7) outside-in. (8) Subassembly labels indicate assembly order. Plates/subassemblies 
are always (9) inserted from above into t-joint shaped (10) jigs. 

Roadkill is subject to three main limitations. First, Roadkill does not handle cross joints. Second, models that are 
heavily interlocked, i.e., models where the removal of one plate allows access to only one additional plate, can result in 
a high number of subassemblies. Third, Roadkill consumes additional material (37% in the case of Figure 1). It uses the 
extra space to get the annotations that where historically engraved into parts, off the parts. 

4 RELATED WORK 

This work builds on research on rapid prototyping, assembly/disassembly in fabrication, techniques supporting manual 
assembly, and nesting. 

4.1 Rapid prototyping 

Speeding up prototyping is a key research topic in personal fabrication. Different approaches have been applied to speed 
up 3D printing, e.g. Wireprint [27], which prints fast wireframe previews and faBrickation [28], which substitutes parts 
of models with building blocks reducing the amount of 3D printing required. More recently, in Toward Support-Free 3D 
Printing [49], Wei et al. reduce fabrication time by partitioning the model in a way that it no longer requires support 
material. In Pop-up Print [30], Noma et al. propose a technique to 3D print objects in a folded state which reduces the 
required volume and support material, thus speeding up the fabrication process. Similarly, researchers have used other 
techniques besides 3D printing to facilitate rapid prototyping, such as WireFab [23] that bends metal wires to create 
structures and ProtoMold [54] that provides interactive vacuum forming to facilitate rapid prototyping.  

Laser cutting on the other hand is by default a fast fabrication technology, due to the fact that it can quickly produce 
multiple plates at once. In StackMold [46], Valkeneers et al. propose using it to quickly create molds, while LamiFold 
[20] and LaserFactory [29] propose integrating mechanisms and electronics during the fabrication process to quickly 
produce a working prototype. Typically, 2D SVGs are used for developing and sharing laser cutting plans and tools e.g. 
Constructable [26] and Joinery [56] have helped users design their models. Similarly, CutCAD [17] helps users model 
3D objects using a 2D format.  

However, 2D modelling slows down the design process creating a bottleneck for laser cutting based fabrication. 
Recent advances in this domain such as FlatFitFab [25], Platener [6] and Kyub [5] allow users to model in 3D effectively 
speeding up the modelling process. However, this has highlighted another part of the fabrication process, assembly, as 
the new bottleneck. With Roadkill, we aim to remove this bottleneck and bring the next speed up to personal fabrication. 

4.2 Assembly and disassembly in fabrication 

Finding a valid sequence of steps to assemble an object has been a widely researched topic. Wilson et al. [50] proposed 
directional blocking graphs as a way to identify and store moveable parts in an assembly at every stage, allowing for 
efficient computation of an assembly plan. This approach has been widely used to analyze the complexity of assembly 
sequences [33], to find valid assembly sequences for furniture design [55] and more recently to create a framework for 
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designing interlocking assemblies [47]. Jimenez et al. [18] and Ghandi et al. [15] provide a comprehensive surveys of 
assembly planning techniques.   

Approaches based on using disassembly sequences to find an assembly sequence have also been explored. In 
Fabrication-aware Design with Intersecting Planar Pieces [37], Schwartzburg et al., leverage this approach to generate 
models that have a valid assembly tree. Cignoni et al. use a similar approach to create an assembly order with the 
additional constraint that the structure remains stable at each step [10]. Similar approaches have been used to create 
interlocking puzzles [43], interlocking assemblies [48], and LEGO Technic based models [53]. In Assembling Self-
Supporting Structures [12], Deuss et al. propose a method to choose an optimal assembly sequence that ensures sturdy 
gradual construction using the least number of materials. Fu et al. disassemble pieces out of a parts graph to create a 
valid assembly tree for interlocking furniture [14], while Song et al. extend this technique to create reconfigurable 
Interlocking Furniture [41]. Converse to this approach, Skouras et al. [40] used the modelling history of the object to 
generate an assembly order. 

We build our work on the disassembly-based approach by finding branches in the assembly tree that can be assembled 
independently of each other, while creating subassembly groups for branches that cannot be assembled independently. 
This simplifies the assembly process, reducing the burden on the user building the model and in turn speeding up the 
process. 

4.3 Supporting the manual assembly process 

Assembly instructions are typically an integral part of a product. Many commercial products such as flat packed 
furniture (e.g., IKEA [13]) or constructions kits (e.g. LEGO [21]) come with an assembly instruction manual. Agrawala 
et al. generalized this approach and provided a framework for creating an instruction manual for different kinds of 
assemblies [2]. To achieve this, they use directional blocking graphs proposed by [50] to find valid assembly sequences 
and then create a manual based on them. Li et al. [22] and Guo et al. [16] have developed similar approaches to depict 
an exploded view (disassembly) of 3D models, while Antifakos et al. [3] propose a proactive appraoch that provides 
appropriate instructions based on the current state of the assembly. Shao et al. propose the reverse process by recovering 
the 3D model of the object through analysis of the assembly instruction manual [39]. Assembler3 performs a similar 
process by reconstructing a 3D model of an object by parsing the 2D laser cutting plan [34]. 

However, an effective method to communicate assembly instructions has been missing in the context of laser cutting. 
A probable reason is that typically laser-cut models were designed in 2D and only had a small number of plates, thus 
lacking a complex assembly sequence. More complex models on the other hand, designed by experts and sold as 
construction kits (e.g. uGears [45]), provide assembly instructions using a combination of plate grouping, break-away 
tabs, engraved numbers and paper manuals.  

However, recent advances in 3D modelling software for laser cutting such as FlatFitFab [25] and Kyub [5] allow 
novice users to quickly create highly complex models consisting of hundreds of plates. While these software provide 
assembly instructions in the form of engraved pair-wise numbers, we deem this approach time consuming and propose 
Roadkill as a solution to effectively communicate assembly instructions and speed up the assembly process. 

4.4 Generating 2D cutting layouts 

Creating a 2D non-overlapping arrangement of parts is typically known as the 2D packing problem or nesting [1]. The 
goal is usually to produce a tight packing and the most common logic used is the no fit polygon (NFP) which typically 
provides good polygon placement based on detected overlaps. Burke et al., used an approximate NFP approach along 
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with metaheuristic algorithms to provide a practical packing solution [7][8]. Several open-source projects such as 
SVGnest [42] and Deepnest [11] are based on the NFP approach. 

Researchers have also explored interactive nesting solutions. Camera based manual nesting solutions are provided 
by VisiCut [31] and PacCam [35], while a projector based approach is explored by VAL [51] and ProjecTables [32]. JigFab 
[19] analyzes the users design and alerts them if their design cannot fit on the materials available to them. Similarly, 
Fabricaide [38] proposes a real-time nesting view that updates during the design process, keeping the user aware of how 
much material is required, allowing them to adjust their design accordingly. Other than reducing packing volume to 
save material, researchers have also looked at how to increase efficiency. In Carpentry Compiler [52], Wu et al. layout 
parts in a way that they share the maximum amount of edges effectively reducing the number of cuts required. 

In our approach, we focus on creating a layout that can be assembled efficiently. Plates within a subassembly are laid 
out by the Roadkill algorithm either adjacently or linked through arrows (based on assembly order), while the 
subassemblies are nested using the approach discussed in [9]. 

5 THE ROADKILL ALGORITHM 

We now present the Roadkill algorithm that converts a 3D model into the type of 2D cutting plan presented earlier. We 
again use the example of the chair model from Figure 1. 

The algorithm proceeds in four steps. (1) the algorithm determines an assembly order, (2) subdivides it into 
subassemblies with independently assemblable branches, (3) creates the 2D layout and finally (4) creates the design 
elements (arrows, labels, jigs, etc.) to generate the 2D cutting plan (which it then saves in SVG format). 

5.1 Step 1: Roadkill determines assembly order by exploring how to disassemble the model 

Roadkill determines a possible assembly order “in reverse”, i.e., it starts with the fully assembled model and explores 
ways of removing plates from it, until fully disassembled. It operationalizes this process in the form of a “disassembly 
tree”. Roadkill then obtains the desired assembly tree by inverting the disassembly tree. 

In order to create the disassembly tree, Roadkill starts by creating a list of plates that can be removed. It then chooses 
the plate that features the largest number of joints (the largest area, in case of a draw) to act as the “key” plate. At each 
hierarchy level of the disassembly tree, the key plate acts as the central node. Multiple key plates can be present at the 
same hierarchy level if the model splits into disconnected components. Roadkill removes the key plate from the model 
and adds it to the disassembly tree. In case of the chair model (Figure 8a), it chooses the chair’s “back” plate. (b) In the 
next step, Roadkill inspects all plates that were previously connected to the key plate for removal. It removes all plates 
that fulfill this criterion from the model and adds them to the disassembly tree, where they form “child” plates of the 
key plate. While evaluating each plate for removal, Roadkill assumes that all other possible child plates that can be 
removed in the same step are still part of the model. This assumption is crucial as it ensures that all “sibling” plates (child 
nodes of the key plate) can be (dis)assembled independently of their siblings. 
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Figure 8: When Roadkill looks for plates that can be removed from (a) the chair model, (b) it chooses the “back” plate due to a high 
number of connecting joints and large area. (c) Roadkill then explores plates that were connected to the back plate for removal, 

removes them, and adds them to the disassembly tree. 

Roadkill then evaluates all sibling plates to find another key plate using the same heuristics as before. For the chair 
it chooses one of the “side” plates (Figure 9a). In this case, two more plates are added as child plates, as they were both 
connected to the key plate and they can be removed. (b) The process is repeated iteratively until (c) all the plates are 
part of the disassembly tree. Algorithm 1 summarizes the process. 

 

Figure 9: (a) Roadkill chooses the side plate (right) as the next key plate and then removes the plates that were connected to it. (b) 
Roadkill repeats the process until all plates are part of (c) the disassembly tree. 

Once the disassembly tree is generated, Roadkill determines the assembly sequence by traversing the tree bottom-
up, where each branch can be assembled outside-in, i.e., by starting from the leaves. 

However, not all branches are independent of each other and some must be assembled in a certain order. Roadkill 
simplifies this with the following step. 

Figure 10 illustrates how Roadkill determines if a plate is removable. (a) Two plates are connected by means of finger 
joints. Assuming the front plate is rigid, these finger joints prevent movement (translation) of the top plate in the four 
directions indicated by red arrows. (b) Now the top plate is connected to four other plates by means of multiple finger 
joints. As a result, constraints add up, so that this plate can now only be removed by (c) translating it along a direction 
of movement that is constrained by none of the joints. (d) In specific cases if a plate is blocked from translating along a 
movement direction by only one of its joints (hidden at the bottom), it is (e) removed by “tilting” it around that joint. 
This case relies on material compliance as fingers closer to the joint will have to compress in order to accommodate this 

ba c

ba c



10 

movement. Certain models from our test set (extracted from the Kyub repository) require such tilting in order to be 
(dis)assembled. However, where possible, our algorithm gives preference to translation over tilting. 

 

Figure 10: (a) Assuming that the front plate is rigid, the finger joints constrain the top plate from translating in four directions (red). 
(b) Adding additional joints constrains it further, so that (c) the only way to remove it is translating along the remaining 

unconstrained direction of movement. (d) If only one joint restricts translation along a movement direction, (e) the plate may be 
tilted out. 

As discussed earlier, the general approach of using disassembly to determine an assembly order is well-established 
in the related work, e.g., [37][47][14]. However, Roadkill extends the status quo by creating subassemblies with branches 
that can be assembled in any order. This simplifies the assembly process as the user only has to pay attention to the 
inter-subassembly order while the intra-subassembly order can now be communicated implicitly through adjacency and 
arrows. 

ALGORITHM 1: Creating the disassembly tree 

generate_disassembly_tree: 
Input: model 
Output: disassembly order tree  
get all plates p of model 
extract key plate k of model 
return generate_disassembly_tree_rec(p, k) 
 
generate_disassembly_tree_rec: 
Input: list of plates p, key plate k 
Output: disassembly order tree 
create empty tree data structure root 
find connected components of plates 
for each connected component: 

get neighboring plates n of key plate k in component 
find removable plates r of neighbors n 
choose a key plate k* from removable plates r 
subtree = generate_disassembly_tree_rec(component without k*, k*) 
add it as a subtree of root 

end 
return root 

ba c d e
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5.2 Step 2: Roadkill creates subassemblies with independently assemblable branches 

As discussed in the walkthrough section, Roadkill commonly enables multiple assembly “sequences” within each 
subassembly, each of which can be assembled independently. Roadkill achieves this by identifying these sequences or 
“branches” in the disassembly tree that cannot be assembled independently from each other. Once identified, Roadkill 
tries to merge the dependent branches together. If that is not possible, Roadkill splits the branch off as a subassembly, 
where assembly order labels ensure that users will assemble in the correct order. 

Two branches can be assembled independently if their originating key plates have no siblings or if the siblings belong 
to a disconnected group. Roadkill starts by analyzing the key plates at the lowest hierarchy of the disassembly tree. As 
shown in Figure 11a, “green” key plates either do not have siblings or their siblings are part of a disconnected group and 
hence their branches are considered independent of each other. However, further up in the hierarchy, the “blue” key 
plate has a sibling (dark brown) belonging to the same group that could potentially block a plate in its branch.  

(b) Roadkill evaluates this condition by creating a state where plates from the key plate branch and the blocking 
sibling plate are present and then tries to remove the key plate branch along its removal direction. If none of the plates 
in the branch are constrained and can be removed, then both siblings are independent of each other. However, in this 
case the sibling plate (dark brown) is constraining one of the child plates from the key plate branch. (c) Roadkill resolves 
this by merging the sibling plate into the branch, disconnecting it from its current parent and connecting it to one of the 
constrained plates. This combination makes the branch independent and avoids creating a subassembly. 

 

 

Figure 11: (a) While all “green” plates do not need to be tested against each other, the “blue” key plate and “dark brown” plate are 
siblings in the same group. (b) Roadkill finds that the “dark brown” plate blocks one of the child plates. (c) Roadkill resolves this by 

disconnecting the blocking plate from its parent and connecting it to the blocked plate. 

However, not all blocking plates can be merged. As shown in Figure 12a, one of the side plates blocks two plates 
across different branches, thus combining it with one of the constrained plates cannot solve the problem. In this case, 
the branches starting with blocked key plates have to be assembled before the blocking “side plate” is inserted. (b) 
Roadkill resolves this by designating the branches as subassemblies and directly linking them to the blocking “side” plate.  
This ensures that they are assembled separately and inserted into the “side” plate before the rest of the model is 
assembled. 

blocked plate
ba c
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Figure 12: (a) In this case a side plate “dark brown” blocks two of the key plates “blue” and some of their child plates (not shown for 
simplicity) (b) Roadkill resolves this by declaring both key plates (and their children) as subassemblies and connects them to the 

blocking plate, this ensures that they will be assembled first and inserted into the blocking plate before it is assembled. 

5.3 Step 3: Roadkill creates a 2D layout by placing plates adjacently, linking them through arrows or 
subdividing into subassemblies 

Roadkill now starts to generate a separate provisional 2D cutting plan for each subassembly. As illustrated by Figure 
13a, Roadkill starts by placing the root plate (“seat”) of the subassembly and then traverses the tree placing the child 
plates (“backrest” etc.) adjacent to their connecting edges while checking for overlaps. Here the “seat” and “backrest” 
plates overlap, thus they cannot be placed adjacently. Similarly, some child plates of the backrest also overlap and cannot 
be placed adjacent to the connecting edge. To resolve this issue, Roadkill connects these plates using arrows. Roadkill 
collects the child plates that overlapped when placed on the adjacent edge (from the disassembly tree) and uses a simple 
physics engine (Matter.js [24]) to find a valid layout based on the following criteria: (1) maximize the number of parts 
that can be connected via arrows, (2) minimize the distance between the connecting edges to have shorter arrows, while 
(3) packing the plates together to conserve space. While finding the globally optimal solution to the packing problem is 
NP-hard, Roadkill’s use of the rigid-body physics engine allows it to find a feasible locally optimal solution. It achieves 
this by representing the compactness of the connected parts as elastic energy of the connecting edges while prohibiting 
overlaps by collision detections of rigid bodies. Plate rotation and arrows with large number of bends are penalized. In 
this case both sets of plates cannot be connected using arrows, (c) Roadkill chooses to link the larger plates using arrows 
(shorter arrows) while designating the others as a subassembly. 

 

Figure 13: (a) Roadkill cannot place all plates adjacently and links overlapping (red) plates through arrows or designates them as 
subassemblies. (b) Based on the result of a physics simulation Roadkill chooses to link the “seat” and “backrest” through arrows 

while designating the other set of plates as a subassembly. 

ba

subassembly

linked as 
subassembly

linked by 
arrows
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As mentioned previously (see walkthrough), Roadkill affords an assembly process where the user can insert all plates 
from above. Roadkill finds conflicts by comparing the assembly direction for each edge in the disassembly tree. As Figure 
14a shows, in this case the “backrest” can receive the subassembly and adjacent plate from above, but (b) itself is inserted 
into the seat plate from below. (c) To resolve this conflict Roadkill mirrors the seat plate. This way the backrest will have 
to be rotated but it can be inserted from above. To enable decorative engraving on the mirrored plate Roadkill can break 
it off as a separate subassembly and the user can flip it manually before connecting to it. 

 

Figure 14: (a) The “backrest” plate can receive the connecting plates from above but (b) needs to be inserted into “seat” plate from 
below. (c) To ensure all plates can be inserted from above, Roadkill mirrors the “seat” plate. This allows the “backrest” to be rotated 

and inserted from above. 

5.4 Step 4: Roadkill creates design elements: arrows, labels, jigs, etc. and generates the 2D cutting plan 

As illustrated by Figure 15, in the final step Roadkill creates all design elements and generates the SVG. 
Arrows are placed by Roadkill between edges that were linked in the previous step using a Dijkstra-based path 

planning algorithm (based on output from Matter.js). When a plate is required to be rotated before insertion, Roadkill 
ensures that an appropriate twist is added to the arrow and that joints connecting the two plates are asymmetric to help 
the user with alignment and ensure correct insertion. 

Assembly order labels are placed on the edge that connects the subassembly to its parent. If the subassembly needs 
to be rotated before insertion the label is placed on a joint that is offset from the center. A matching smaller label is 
placed along the receiving edge along with a “arrow hat” (^) symbol pointing to the joint where the subassembly will be 
inserted. The last subassembly gets the “base” label on its starting plate. 

Preview thumbnails are generated by combining a simplified angled silhouette of the outermost plates of the model 
(posed in a three.js canvas) and an eroded silhouette of the assembled subassembly plates form the same angle. The 
preview thumbnail is placed next to the order label. 

A frame outline for the subassembly is generated by merging the simplified polygon outline of each element. The 
outline is then dilated and rounded. The merge includes all elements i.e. plates, arrows, order labels and preview 
thumbnails. Gaps and concavities are simplified to allow more stability for the frame. 

Starting plates for each subassembly (leaves of its disassembly tree) are given a partial polygon outline, allowing 
them to protrude outside the frame outline. 

Break-away tabs are generated for all plates to temporarily hold them in the frame after cutting. The number of 
tabs received by each plate depends on its size, while the thickness of the tabs is determined by the kerf of the laser 
cutter. The majority of the tabs for each plate (except the last plate) are placed along the connecting edge. This allows 
the user to guess where the tabs are allowing them to easily and intuitively disconnect the plate.  

ba c
“seat” plate is mirrored to 
allow “backrest” to insert 
from above
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T-joint shaped jigs are created by placing a cutline next to the joint(s) along an edge. Multiple edges on a plate may 
have jigs based on how many plates are connecting to it in the current assembly step. 

 

Figure 15: Roadkill creates the design elements and generates the SVG. 

6 TECHNICAL EVALUATION 

We integrated Roadkill into an existing 3D editor, Kyub [5]. In order to evaluate the performance of the Roadkill 
algorithm we used it to export the top 60 models (based on popularity) from the Kyub repository. Roadkill was able to 
generate layouts for 55 models (92%), where on average 81% of connecting plates were either placed adjacent or 
connected through arrows. 5 Models (8%) were heavily interlocked and failed to export. Figure 16 shows the layouts 
generated by Roadkill for 8 models from the Kyub repository test set. Design features are not included in the image for 
clarity. 

 

 

Figure 16: Roadkill layouts of some models from the Kyub repository. 

arrow
assembly order label

preview thumbnailframe outline

starting plate
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The Roadkill algorithm adds 1.11 seconds to the export of the chair model, 2.81 seconds to the most complex model 
in the test set (99 plates), and on average of 0.89 seconds to all models in the test set. Given the assembly time saved (12 
minutes in case of the chair model) the computation time can be considered negligible. 

7 USER STUDY: LAYOUTS CREATED BY ROADKILL SPEED UP ASSEMBLY 

In order to validate our claims regarding the assembly speed enabled by Roadkill, we conducted a user study. The 
participants’ task was to assemble the chair model from Figure 1 from a 2D cutting plan produced by Roadkill, as well 
as from a 2D cutting plan produced by the traditional approach based on pairs of numbers (Kyub [5]). We hypothesized 
that participants would complete the task faster in the Roadkill condition. 

7.1 Task 

Participants assembled the chair model from Figure 1 (23 plates), from 4mm poplar plywood. Kerf was calibrated so as 
to ensure comfortable assembly by hand, i.e., without the use of tools. 

7.2 Interface conditions 

Participants assembled one chair for each of the following two interface conditions: 
In the Roadkill condition 2D cutting plans were generated using the Roadkill algorithm presented throughout this 

paper (see Figure 1). 
In the pairsOfNumbers control condition 2D cutting plans were generated using a 3D modeling tool for laser 

cutting (Kyub [1]), which follows the traditional approach of linking joints by engraved pairs of numbers, as shown in 
Figure 2b. In addition to pairing up joints, numbers also indicated assembly order, so that participants would start by 
joining the two edges labeled 1, then 2, and so on. 

Participants received training in the form of two 2:40 min videos that illustrated how to assemble a simple object 
using the pairsOfNumbers interface (Figure 17b) and the Roadkill interface (Figure 17c) respectively. After watching the 
video, the participants physically assembled this training model. During the study the participants were allowed to look 
at a picture of the 3D model they were assembling. 

 

Figure 17: (a) A simple object was used to create instructional videos to show participants how to assemble both (b) traditional and 
(c) Roadkill layouts. 

Each participant assembled the chair under both interface conditions (within-subject design) in counter-balanced 
order and their completion times were measured. After completing each condition, they filled in a questionnaire. All 
participants completed the study in under 1 hour. 

training model b ca
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7.3 Participants 

We recruited 12 participants (9 male, 3 female, average age = 23.4 years, SD = 3.4) from our institution (plus one 
participant who had to abort the study, when the provided materials turned out to be warped). 8 participants had no 
prior experience assembling laser-cut objects, while the remaining 4 had designed, laser cut, and assembled models in 
the past. 

7.4 Results 

Completion time: Figure 18 summarizes the assembly times for all participants. As expected, the participants spent 
more time assembling the traditional layout, 22 minutes on average, while an average of 10 minutes were spent on 
assembling the Roadkill layout. Differences were significant (𝑡𝑡(11) = 7.8, 𝑝𝑝  < 0.001, 𝑑𝑑  = 2.25) and the effect was 
substantial: participants were on average 2.4 times faster in the Roadkill condition.  

 

Figure 18: Results: Participants assembled the chair model on average 2.4x faster with the Roadkill interface. Error bars indicate 
standard error. 

Subjective feedback: Figure 19 shows the result of the questionnaire. Participants rated “finding matching plates” 
as “easy” for the Roadkill layout, had a sense of how to assemble before starting and felt that the Roadkill communicated 
assembly order clearly. They enjoyed assembling the Roadkill layout. 

 

Figure 19: The results of the questionnaire that was conducted after the participants had completed the respective study. 

Specifically for the Roadkill layout (Figure 20), all participants rated finding starting plates for each subassembly as 
“easy”, and joining multiple plates/subassemblies using the jigs was also rated “moderately easy”. Finding matching 
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plates and joining them based on adjacency and numeric symbols was also rated as “easy”, while a few participants had 
trouble joining plates based on arrows. Some participants also found it slightly difficult to insert a completed 
subassembly into the receiving part. 

 

Figure 20: The results of the questionnaire conducted specifically for the Roadkill interface. 

Participants mentioned that the thumbnails helped them get a sense of how the model would be assembled, with P6 
saying “the picture of the result and the part visualizations [it] made clear what goes where”. All participants agreed 
that locating starting positions was easy with P9 mentioning “if felt very natural to start with these rough parts”. A few 
participants also noted that the layout felt intuitive, with P3 saying “no need to think about the order”. Two participants 
(P4, P6) mentioned that while it was easy to insert a few plates, inserting a subassembly consisting of multiple plates 
was more difficult, as multiple joints have to be aligned at the same time; P6 added that this part “took a while”. 

Since Roadkill places instructions next to plates, while the traditional approach engraves plate IDs into plates, we 
used the questionnaire to find out whether that made a difference to participants. Specifically, we asked the participants 
whether they found engraved IDs acceptable in the context of models created for personal use. 7/12 participants strongly 
disagreed, while 3 participants said they would accept them if they were only building a prototype model but would like 
to remove them when building a presentation model.  

7.5 Discussion 

The results confirmed our hypothesis that layouts generated by Roadkill result in faster assembly. The speed up was 
substantial ~2.4x. Participants who had no previous experience in assembling laser-cut objects reported the highest 
increase in assembly speed, with 4 participants (P3, P4, P8, P10) exhibiting more than a 3x speed up. Experienced 
participants (e.g., P2, P12 > 50 laser-cut models built) also spent less time assembling the Roadkill layout. To further 
explore these observations we subdivided our 12 participants into “experienced participants” (P2, P5, P6 and P12) and 
“novice participants” and found that “experienced participants” were on average 1.86 times faster (𝑡𝑡(3) = 8.212, 𝑝𝑝 < 
0.002, 𝑑𝑑 = 4.1) under the Roadkill condition, while “novice participants” were on average 2.66 times faster (𝑡𝑡(7) = 7.421, 
𝑝𝑝 < 0.001, 𝑑𝑑 = 2.62). P11 spent the longest time assembling the Roadkill layout, the reason being that they did not fully 
connect the plates before moving to the next step, resulting in backtracking. 

While visual search appeared indeed as the cause of slow assembly in the traditional layout condition, we also 
observed that participants had a hard time following the assembly order. The reason was that the assembly order for the 
chair (as for any slightly more complex laser-cut model) is a tree structure and a linear set of numbers cannot effectively 
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communicate a tree-based order. Thus, when the process required participants to assemble multiple branches separately, 
participants had a hard time figuring out when to combine them. In some cases, this required them to backtrack. 
Conversely, participants showed no difficulties following the grouping provided by Roadkill. 

8 CONCLUSION AND FUTURE WORK 

We presented Roadkill, a software tool that converts 3D models to 2D cutting plans for laser cutting, such that the 
resulting layouts allow for fast assembly. Roadkill achieves this by putting all relevant information into the cutting plan.  

Zooming out, Roadkill contributes to pushing the speed boundaries of fast laser cutting. It achieves this by shifting 
the focus from the design of laser models to the entire design, cut and assembly process. Given that design and cutting 
tend to be fast already, Roadkill’s 2.4x speed-up of the assembly process also speeds up the end-to-end process; in the 
example of the chair model, Roadkill speeds up the entire design, cut, assemble by a factor of 2: from the idea to a 
physical chair model in 16 minutes. 

As future work, we plan on achieving further speed-ups by exploring models that combine laser cut joints with 
concepts known from foldable models. 
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